
17 

On almost rigid rotations 
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SUMMARY 
In order to answer some of Proudman's questions (1956) 

concerning shear layers in rotating fluids, a study is made of the 
flow between two coaxial rotating discs, each having an arbitrary 
small angular velocity superposed on a finite constant angular 
velocity. It is found that, if the perturbation velocity is a smooth 
function of r ,  the distance from the axis, then the angular velocity 
of the main body of fluid is determined by balancing the outflow 
from the boundary layer on one disc with the inflow to the boundary 
layer on the other at the same value of r .  At a discontinuity in 
the angular velocity of either disc a shear layer parallel to the axis 
occurs. If the angular velocity of the main body of the fluid is 
continuous, according to the theory given below the purpose of 
this shear layer is solely to transfer fluid from the boundary layer 
on one disc to the boundary layer of the other. It has a thickness 
0(v1is), where v is the kinematic viscosity, and in it the induced 
angular velocity is 0(v1l6) of the perturbation angular velocity of 
the discs. On the other hand, if the angular velocity of the main 
body of fluid is discontinuous, according to the theory given 
below the thickness of the shear layer is O(d4). A secondary 
circulation is also set up in which fluid drifts parallel to the axis 
in this shear layer and is returned in an inner shear layer of 
thickness O ( V ~ ' ~ ) .  

The theory is also applied to the motion of fluid inside a closed 
circular cylinder of finite length rotating about its axis almost as if 
solid. 

1. INTRODUCTION 
Recently Proudman (1956) has investigated the motion of an in- 

compressible viscous fluid confined between two concentric spheres which 
rotate about a common diameter I with angular velocities !2 and a( 1 + E), 

where E is small. He found that when the kinematic viscosity v is small the 
circular cylinder C circumscribing the inner sphere and having its generators 
parallel to I separates out two regions with different properties. Outside C 
the fluid rotates as if solid with the angular velocity of the outer sphere while 
inside C the angular velocity is a function of distance from I only, deter- 
mined by balancing the fluid entering the boundary layer on the faster 
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moving sphere with the fluid leaving the boundary layer of the slower 
moving sphere. According to this solution there must be a return of fluid 
and Proudman inferred that it could occur only near C, but he was unable 
to decide whether the appropriate shear layer would have a thickness 
O(v1I3), O(v1i4), or even more, and did not determine the behaviour of the 
fluid in any of these possibilities. In view of the difficulty of determining 
even the principal properties of rotating fluids in certain problems it is 
desirable that Proudman's argument be completed so as to eliminate the 
possibility that the flow between the spheres be of an entirely different 
character. 

The problem considered by Proudman is unfortunately too difficult to 
solve completely at present, and so in this paper a simpler problem, namely 
the flow between two coaxial planes rotating almost as if solid, is considered. 
A complete formal solution may be obtained which supports his inferential 
argument when v is small. In  addition, if there is a discontinuity at a 
distance a from the axis in the angular velocity of either discs, a shear layer 
of the character required by Proudman is formed near the coaxial cylinder 
of radius a. In  this layer any necessary change in the angular velocity of 
the main body of the fluid occurs in a distance O(v114) while any necessary 
transfer of fluid from one disc to the other occurs in a distance 0(v1I2). 
Associated with the change in angular velocity there is also a circulation 
in which fluid is carried parallel to the axis in a layer of thickness O(v1I4) 
and returned in an inner layer of thickness O(v113). A like problem also 
discussed here is that of two coaxial parallel discs rotating with the same 
angular velocity but enclosed in a coaxial cylinder of radius a rotating 
with a slightly different angular velocity. The boundary layer on the 
cylinder also consists of two parts and on the discs the boundary layer is 
as usual of thickness 0(~l /~)  but only penetrates a distance O ( V ~ / ~ )  from 
the cylinder. 

2. Flow between coaxial rotating discs 

the u" axis with angular velocities 

Q + Qe{Fl(r) + F,(r)} and 
respectively, where ar and ax denote distances from an along the axis of 
rotation, a is a characteristic length and E is small. Let the components of 
the velocity of the fluid be (u, cu, w )  relative to fixed cylindrical polar axes 
with coordinates (r, 8, z). Then since by symmetry all dynamical variables 
are independent of the azimuthal angle 8 we may use the equation of con- 
tinuity to define a stream function $ by 

Consider two discs in the planes z = + d  and z = - d rotating about 

Q + Qe{Fl(r) - F,(r)}, 

(2.1) 

Further write rv = aQr2 + eaQx. (2.2) 

E u ~  a$ E a ~  a+ 
Y z- u =  --- ax, W = -  

If E = 0 the solution of the Navier-Stokes equations which satisfies the 
boundary conditions is x = t,b = 0. Hence since E is small it is reasonable 
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to retain only the first order terms in E, when as Proudman has shown the 
Navier-Stokes equations reduce to 

where R = a2Q/v. The boundary conditions are that 

(2.5) 

~fr = afriaX = o at x = f d,  

x = r2{Fl(r) +F2(r)}  at x = d, 
x = r2(Fl(r) - F2(r)} at z = - d. 

The main interest of the problem stated above lies in its exemplifi- 
cation of the flow arising from more general rotating bodies, such as the 
spheres considered by Proudman (1956). For rotating discs the particular 
case when F,, F2 are piecewise constant is of greatest interest. It is con- 
venient to treat the problem in two parts by setting Fl and F2 successively 
equal to zero. 

3. THE ANTISYMMETRICAL PROBLEM 

Write 

- m  

$ = r 1 B(k)J,(kr)cosh ux dk. 
0 

These functions are solutions of (2.3) and (2.4) if 

(3.2) BRu2 = - ( u ~  - k2 )A, (u2 - k2)3 = - 4R2 u'. 
There are three roots ul, a2, u3, each with positive real parts, of the 

Hence the general sextic in a which lead to independent solutions. 
solution of (2.3) and (2.4) of the form (3.1) is 

(3.3) 
x = r 2 lom A,(k)J,(kr)sinh as x dk, 

* = r  2 J m + k 2  As(k)Jl(kr)cosh cc, z dk. 

Further, from the boundary conditions, since Fl = 0, 

s = 1  

s=1 0 at? 

where 
W 

r2F2(r) = r I f2(k)Jl(rk) dk. 
0 

From the three equations A, can be determined in terms of f a ,  and a 
Of particular interest is the form of the complete formal solution found. 

B 2  
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solution when R is large, and during the remainder of the paper we shall 
concentrate on this special case. Then so long as k < R112 the relevant 
roots of the sextic (3.2) are 

k3 
u, = + O(k'R-,), a, = R112(1 +i) + O(k2R-1/2), 

~3 = R1l2(1 -i) + O(k2R-1/2). (3.5) 
I t  is noted that u2 and u, are associated with regions of rapid change in the 
axial direction of thickness O(R-l12) while a1 is associated with a region of 
rapid change in the radial direction of thickness O(R-I',). It will appear 
later that all three can combine to give another region of rapid change in the 
radial direction of thickness O(R-l/*). The assumption k < Rlr2 is justified 
only if the integrands in (3.3) are negligibly small when it is not satisfied. 
It will appear below that this is true except within a distance O(R-lI2) of any 
irregularity in the angular velocity of either disc. 

Further, 

(3.6) 
kf2 

= 2R1l2 cosh(k3d/2R) + k sinh(k3d/2R) ' 
2R1i2 k3d 

A, exp{R112d( 1 + i)) = A, exp{R1l2d(I - i)) = - k A, cosh - 2R ' (3.7) 
provided that, in addition to k < R112, d >> R-I,,. 

If F,(r) is a smooth function tending to zero as r -+ co, k3d may be neglec- 
ted in comparison with R in the determination of x and $. We find that 
except when 1x1 -d  = O(R-lI2) the contributions from A,  and A, are 
exponentially small and 

while 

I n  the neighbourhood of x = k d there are, in addition to the contribution 
from A,, also important contributions from A, and A, leading to boundary 
layers of thickness O(R-1/2) in which 

(3.10) 

The 
outflow from the boundary layer of the slower moving disc must be the 
same as the inflow to the boundary layer of the faster moving disc. Using 
Proudman's argument this could only be achieved if the angular velocity 
in the main body of the fluid were the mean of the angular velocities of the 
discs at the same value of r ,  which is in agreement with (3.8). 

If d = O(R-l12) a special treatment is required but there is no difficulty. 
Physically it means that the boundary layers on the discs have joined up. 

If F, has a discontinuity, at r = 1 for example, # also has a discontinuity 
a n d  the integral for x fails to converge there. A closer examination of the 

i x = r2F2(r)rZ cos x ,  

+ = 2$-112r2F2(r)[1 - 112 e-x COS(X- in)], 

x = (d- 1~1)Rl/~. 
These results agree with Proudman's arrived at inferentially. 
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flow near r = 1 is necessary and for this purpose let us take 

r”, = - 1 (r  < l), 
= +1 (r  > 1). 

(3.11) 

Although the same approach as,before may be used with success the easiest 
method is to assume that modifications to the solution already obtained 
are necessary only in the neighbourhood of r = 1. It is then legitimate to, 
neglect the operator (l/r) a/& in comparison with az/ar2 and a2/ax2 in (2.3) 
and (2.4), and to extend the range of r from (0, co) to ( -  00, co). T h e  
problem is now reduced to a form amenable to the sine transformation. 
Write 

3 p a  1 

(3.12) 
x = C  J, A,(k)sin k(r - 1)sinh 01, z dk, 

s=l 

A,(k)sin k(r - 1) cosh us z dk, 

where us is defined in (3.2), (3.5), and A, in (3.4), except that now 

Hence, except when 1x1 - d  = O(Ru2) ,  

f2(k)  = 2/nk. 

eiklr--ll sinh(k3z/2R) dk 
x =  

it being assumed that the integrand is negligibly small when k = 

(3.13)l 

(3.14) 

O( R112) .. - -  . 
The integral may be evaluated by contour integration on noting that 

since R is large the poles of the integrand occur at cosh (K3d/2R) = 0, and 
we have 

2 sgn(r - 1) ( - )n sin((2n + l)nz/2d} 

x [e-pn - 2e-pn/2 cos (4d3& - in) ]  + O(R-l13), (3.15) 

X x = - 3n213d113R1/6n=0 2 (zn + 1)2/3 

where 

Similarly, 

p n = { (2n +d1)rR)43 lr-11. 

sgn(r - 1) 2 sgn(r - 1) 
# = 2R1/2 3nR1I2 n = O  2 2 n + l  

( - )n cos((2n + l)nz/2d} 
X - 

x [e-fln + 2cBn12 cos 4113&] + O(R-2/3). (3.16) 
Near IzI = d extra terms must be added from A, and A, leading to boundary 
layers of the type described in (3.10). Thus the thickness of the shear 
layer near Y = 1 necessary to permit the return of fluid from one disc to the 
other is O(It1I3) and in it the fluid velocity is O(R1/6) .  

The particular form (3.11) was chosen for F, because of the simplicity 
of its sine transform (3.13), but it is to some extent artificial since 
the angular velocities of the discs are singular at r = 0 and in any 
case the linearization of the equations of motion is invalid there. 
Nevertheless the solution obtained describes the shear layer appropriate 
to a discontinuity in the angular velocities of the discs at r = 1 because its 
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,effect is confined to the immediate vicinity of r = 1, and further, outside it, 

+ = 1R-l12 2 sgn(r - l), x = o ( I W 6 ) ,  (3.17) 
in agreement with (3.8) and (3.9). 

The solution can also be used to complete the description of the flow 
given in (3.8) and (3.9) in the more realistic case when F2 is bounded. Let 

I F, = l ( r ) -m(r)  (r  < l), 
= l ( r )+m(r)  (r  > l), 

(3.18) 

where I, m are smooth bounded functions of r ,  and write xo, z/i0 respectively 
for the right hand sides of (3.15), (3.16). Then 

= m(r)Xo + 0 ( ~ - 1 / 3 ) ,  

+ = +R-wz(~)  + r2m(r)  +o + 0 ( ~ - - 2 1 3 )  (3.19) 

is uniformly valid everywhere except in the boundary layers of the discs. 
The effect of the approximations made so far may now be established. 

The operator (l/r) a/& makes contributions O(R-1/3+0) to + and O(R-113~o) 
to x .  Further, since all the contributions from the shear layer tend to zero 
.exponentially outside it the effect of extending the range of the problem 
from 0 < r < 00 to - 00 < r < 00 is to add exponentially small terms to 
x and +. Hence in general the solutions given above are the correct leading 
terms when R is large. There is a breakdown, however, if that part of the 
range of integration when k = O(R112) makes a significant contribution to 
any of the integrals. A simple way of estimating when this is likely to 
happen is to examine the behaviour of the approximate forms when 
K = O(R1/2). The integrand when F2(r) is smooth will certainly be 
negligible in virtue of f2 (k ) .  Let us consider (3.14) as an example of the 
situation when F2(r) is not smooth. Writing k = k, + ikZ, the modulus of 
the integral when k, > 0 and k = O(R112) is 

.and is not exponentially small only when both I T -  11 and d -  /zI are simul- 
taneously 0(R-lI2), that is, only in the immediate neighbourhood of the 
discontinuity in the angular velocity of the discs. 

Finally Proudman examined the order of magntidue of the non-linear 
terms in the Navier-Stokes equations and from his results we deduce that 
the theory of the flow in the shear layer is valid except at r = 1, 1x1 = d in 
the limit E -+ 0, R 4 co so that ER + 0. The condition is more than sufficient 
to ensure the validity of the theory elsewhere apart from the artificial, but 
convenient, case described in (3.11) which fails at r = 0. 

It is possible for F,(r) to be continuous but to have a discontinuity in 
its first derivative. An example is 

y2F2(r) = e-W--ll (3.20) 
where y is a constant. Using the same technique as when F2 was dis- 
continuous we find that the shear layer is again of thickness O ( l W 3 )  and 
that in it x = O(R1la),  + = O(P5I6). 
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4. THE SYMMETRICAL PROBLEM 

I n  this case 
x = r2F,(r) at z = +d, (4.1) 

and we write 

I m 

= r C . .  1 A,(K)J,(kr)cosh usz dk 

.and the treatment closely parallels that for the anti-symmetrical problem, 
the only difference being that cosh and sinh are interchanged throughout. 
If Fl is a smooth function it may be shown that 

.everywhere confirming Proudman's argument. Near the discs there are 
boundary layers in which the change in x is O(R-li2) and the change in I,L is 
,O(R-l). The flow near a discontinuity however introduces novel features. 
For defining F, as in (3.11), 

x = rZF,(r) + 0(R1l2) and I,L = O ( R 1 ) ,  (4.3) 

v -  

eiklr--ll cosh(K3z/2R) dk 
(4.4) 

sgn(r- I)>{ 
x =  - -m 2R1I2 sinh(K3d/2R) + K cosh(k3d/2R) 

in the immediate neighbourhood of r = 1 except if 1x1 - d = 0(P1I2), when 
-extra terms, as in (3.10), must be added. Since R is large the poles of the 
integrand occur at sinh(K3d/2R) = 0 and at K2d+ R112 = 0. Evaluating 
the residues at the relevant poles we have 

1 - exp( - R1/*d-1/21r - 11 } - 

where 

Similarly 
x 

* =  -- sgn(r- l)exp{ - R1/4d-1/2/r - 11) + 
2R1/2d 

+ sgn(r - 1) 5 ( - )" sin(nnz/d) 
[e-vm + 2e-?'m/2 cos(~d3yn)]. (4.7) 

37~Rl1~ n = l  n 
I n  this case therefore the shear layer has a thickness O(d112R1/4), con- 

firming one of Proudman's suggestions. A shear layer of this type is 
necessary to allow x to change sign. As a result fluid drifts from the central 
plane towards the discs with velocity O(R-1/4) and the return of fluid from 
the discs takes place in an inner boundary layer of thickness O(R1'3) and 
the azimuthal velocity that is induced is O(R1IS). 

As d-+ 00 the contribution to x in (4.3) from the first two terms tends 
to zero and that from the series is O(R-lIS) except in the immediate vicinity 
.of IzI = d. Thus if a disc is rotating in an unbounded fluid the angular 
velocity of the fluid cannot have a finite discontinuity in the limit of zero 
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viscosity, for the shear layer it would generate when the viscosity is small 
could not be thin. This result is to be contrasted with the related problem 
of the flow due to the slow motion of a body of revolution along the axis of 
an unbounded rotating fluid. In the special case of a circular disc of unit 
radius Morrison & Morgan (1956) have obtained a complete solution. 
They showed that when v is small the effect of viscosity may be neglected 
saue near the disc and the cylinder Y = 1. In the inviscid solution the 
perturbation of the angular velocity is zero outside and O((1 - ~ ) - l / ~ ]  inside 
the cylinder r = 1. A shear layer is necessary to smooth out this singularity ; 
it is controlled by the same set of equations as in the problem discussed 
above and its thickness is O(R-lI3). Paradoxically the shear layer can 
smooth out the infinite discontinuity in Morgan’s problem but cannot 
smooth out the finite discontinuity in the present problem. It would be 
interesting if Morgan’s problem could be solved for a fluid bounded above 
and below the disc to see whether there is any fundamental change in the 
character of the shear layer. 

A parallel treatment, defining F, as in (3.17), shows that, if the angular 
velocity of the discs has a discontinuous derivative, in the shear layer 
4 = O(P3l4) and the increment of x is O(RW4). 

5 .  ROTATING CYLINDER 

Another example in which one of the friction layers has a thickness 
O(R-1/4) is provided by the flow inside a circular cylinder which is almost 
rotating like a rigid body. Suppose it has its plane surfaces in the planes 
z = k d, the z axis for its axis of symmetry and of rotation, and unit radius. 
Let the angular velocity of the plane surface be i2 and of the curved surface 
be i2(l + E ) .  Then proceeding as before we have for boundary conditions 

It is likely, and will be confirmed later, that the perturbation in the 
velocity components from those in a state of uniform rotation with angular 
velocity i2 will be confined to the neighbourhood of r = 1. Accordingly 
we neglect the operator ( l / u )  a/& in the linear differential equations satisfied 
by x and $ and extend the range of r to ( -  co, 1). 

Then write 
3 

x = 2 2 A,, e-kd-r)cos a,, z, 
n s=l 

whence 

where a,, is any one of the three roots of 
(a2 -k~)3+4R2u2  = 0 

( 5 4  

(5.3) 



On almost rigid rotations 25 

with positive real parts, and the summation is over all acceptable values of 
k,. When R is large and k ,  < R1/2 the relevant roots of (5.3) are 

a, = k z / 2 R ,  a2 = R1/,( 1 + i), u3 = R1/2( 1 - i). (5.4) 
The acceptable values of k,, which must have positive real parts, are 

3 3 1 
determined by the conditions at [zI = d. These lead to 

2 A,,~o~or,, d = 0, 

2 a:n - ki 

2 UR ACOSU,, d = 0, 
(5.5) 1 

s =  1 s = 1  

A,, sin or,, d = 0, 
J s=l Msn 

which have a non-zero solution for A,, only when the determinant of the 
coefficients vanishes. For large R this means that either 

sin(k1 d /ZR)  = 0, k, # 0, that is3 

2 R n n  2 R n n  113 2 R n n  '113 
kn = (72-)'13, (7) (4+&43i )  or (7) (4-+43i) ,  (5.6) 

where n is a positive integer, or k, = (R/d2)1/4.  
satisfied, 

When this condition is 

k3d 
2 R  - A, cos - - - 2A, cos R112( 1 + i )d  = - 2A, cos R1la( 1 -i)d. (5.7) 

The contributions from A, and A, may be neglected except in the immediate 
neighbourhood of IzJ = d and constitute a boundary layer in which the 
perturbation components in the main body of the fluid are brought to zero 
at the plane faces. Hence elsewhere, substituting the permissible values 
of k, into (5.2), we find that 
x = B exp{ - R1/4d-1/2( 1 - r)}  + 

BZ 
2dR1I2 * =  -- exp{ - R1/4d-1/2( 1 - r)}  + 

sin( nnxld)  
{C, e+n + D, e+'n12 cos(4d3yn + 7, + $T)}, 

1 +--2 2nR1/2n=l n 

(5.9) 
where yn is defined in (4.6), and B, C,, D,, 7, are constants. 
boundary conditions at r = 1 where y, = 0, we have 

From the 

B = 1, C,+C,co~r]~ = 0, (since x = l), (5.10) 

(5.11) - a* 
ar 

C, - D, COST, = O(R1/12), (since - = 0), 

C,+D,cos (~ ,  +&r) = 2( - )n+l ,  (since # = 0). (5.12) 

x e-"nlz sin(+d3yn) + O(R-lI4) (5.13) 
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and 
z 

* =  -- exp{ - R1/4&1/2( 1 - r)}  - 2dR1/2 

Thus again the shear layer near r = 1 is in two parts. The main part has 
thickness O(P1/4)  and in it x is reduced from unity to zero. However to 
do this 1/1 and a$/& must be given non-zero values on the curved surface of 
the cylinder. An inner boundary layer whose thickness is O(R-lI5) is 
therefore necessary to bring these to zero on the wall. This in turn leads 
to an inner layer for x but the change in x which results is only O(R-lis). 
Finally near the planes /zI = d additional boundary layers like (3.10) occur 
to bring the dynamical variables to zero at /zI = d. It is noted that these 
will extend for a distance O(R-1/4) inwards from r = 1 and O(R-1/2) from 
IzI = d while the basic assumption of this paper, that k2 < R is not justified 
if IzI - d and 1 - r are both O(R-lj2). 
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